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SOME ASPECTS OF CONSTRUCTIVE MATHEMATICS 
THAT ARE RELEVANT TO THE FOUNDATIONS OF 
NEOCLASSICAL MATHEMATICAL ECONOMICS 

AND THE THEORY OF GAMES* 

M 
Alain A. Lewis** 

1-   A Constructive Counterexample To A Non-Constructive Theorem On 
Demand Correspondences. 

Typically, one finds the following mathematical model in the neo- 

classical literature of mathematical economics e.g. in Debreu [1959], 

Nikaido [1968] or more recently the article by Muhkerji in Econometrica 

Vol. 45, No. 4 May 1977. 

Definition 1:   Let E"  denote n-dimensional Euclidean Space and 

ScE",  a non-empty set of all possible alternatives, on which a binary 

relation R  is defined. Let R be reflexive, transitive and complete. 

Then R is a typical weak preference relation, from which a strict 

preference relation P and an indifference relation I may be 

obtained in the customary fashion. 

Definition 2:   Let x    denote the class of all non-empty compact 

subsets of S.  For every Aex,     let 

C(A) = [xeA : yeA => xRy] 

*   This work was supported by Office of Naval Research Grant N00014- 
86-K-0216 at the Institute for Mathematical Studies in the Social 
Sciences, Stanford University, Stanford, California. 
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If C(A) ^ ^    for every Ae^,  then a choice function exists on x- 

Definition 3:  Let fi    denote the class of budget sets on S, 

where y3 C x-  If a choice function exists on B,  then a demand 

correspondence exists on y3. Let 

d(B) ■= [ycB : xeB => y R x] 

denote the induced demand correspondence for a fixed element Be^S 

Theorem 1:   If the set R^ = [y: yRx & yeS]  is closed relative 

to  S  for all xeS,  then d(B) ^  p  for all Be/9  iff for all Eefi 

and for every finite subset  [x^,...,x^] c B, 3yeB  s.t.  yRy and 

yR Xj  for all j <: n.      ' 

Pf.  The only if direction of this is trivial. For sufficiency, let 

\W  = Rj, n B,  and for arbitrary B choose a finite set 

[^1 x^] c B.  By hypothesis, n.^   R^.    (B) ,^  J2I,  and the family 

{Rj^(B): xeB)  has the finite intersection property. Since B is 

compact,  d(B) = n^gB^x^^^ ^ ^. 

This theorem is a typical existential statement in mathematical 

economics. It tells us that a mathematical object exists having "very 

nice" properties, but there is no mention of how one might go about 

finding the set defined by d(B)  for any particular B  in the family 

of budget sets. In other words, the theorem does not provide us with an 

algorithm to construct the order-maximal elements from any given set in 



B in accordance with the "rules of correspondence" provided by the 

mathematical object d:B -♦ B. 

There are at least two important ways to demonstrate the non- 

constructive character of the above theorem within recursion theory: 

First, the proof of this theorem like many in mathematics uses a highly 

non-constructive mathematical principle: the Heine-Borel Theorem. In 

fact, if the Heine-Borel Theorem were restricted to be constructive in 

a precise interpretation within the framework of recursive analysis, it 

would not be a theorem at all. We believe that Ernst Specker was among 

the first to realize this along with his early observation that the 

Bolzano-Weirstrass Theorem fails in recursive analysis. Thorough 

discussions of this type of phenomenon can be found in the very 

comprehensive book on constructive mathematics by Michael Beeson [1985] 

and in the monograph Structure and Complexity by Lewis [1986]. 

Secondly, even if the theorem were true constructively, e.g. put in 

terms of finite sets entirely, the hypothesis of the theorem is not 

sufficient to provide any effective means for uniformly determining 

values of d(B)  from effective enumerations of elements in its domain. 

Here, we call an eniomeration effective if it can be carried out by an 

algorithm; and the set of objects thus enumerated is termed recursively 

enumerable. 
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To underscore the second point, here is an example of a non- 

computable choice function on a recursively enumerable well-defined 

family of finite sets. 

Example 1:  We will assume Church's Thesis and identify with any 

computable function some Turing machine that represents the recursive 

function and provides the algorithm for the computation of the 

function. A discussion of Church's Thesis and the terminology and 

concepts used from recursion theory may be found in Rogers [1967], or 

Beeson [1985]. We will not go into detail on the reasons why Church's 

Thesis is a useful and reasonable principle, as we have discussed it 

elsewhere, cf. Lewis [1985]. 

Let w be the first infinite ordinal, i.e. 

w = {0,1,2 n, . ..) 

and define the following family of finite sets. For each n < o,  let 

B(n) be the initial segment of w determined by all integers less 

than or equal to the maximum number of one's printed by a Turing 

machine having n-states. There are infinitely many such machines, each 

determined by a list of instructions for the computation it performs. 

But there are only finitely many equivalence classes over the different 

programmes for the class of n-state Turing machines. Let the relation 

R be determined by the reflexive order on the natural numbers so that 

X R y iff X > y for all x,y < w. It is clear that |B(n)| < w, for each 
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n and so, the set  {y: xeB(n) =» yRx}  exists for all n and is simply 

the quantity argmax f for  f the identity function on w. Note 
B(n) 

that the identity function is a recursive function; in fact, it is a 

primitive recursive function. And so, for each n, the quantity argmax f 
B(n) 

may be effectively found. 

But now let us ask the question whether there exists a recursive 

function he'^w such that for all n < w, 

h(n) = argmax f 
B(n) 

First of all, if there were such a function he'^w, it is easy to 

see that there are certain features it must possess. 

Lemma 1:   If there exists a recursive function he'^u    such that 

for all n < w,  h(n) = argmax f then, 
B(n) 

■   ; (1)  h(l) =1 

(2) h(n + 1) > h(n) 

(3) h(n + 11) > 2n 

Pf:  Boolos and Jeffrey [1974] or T. Rado [1962] 

Theorem 2:   There is no recursive function h satisfying 

properties (1) - (3). 

Pf:   It is not hard to see that if h were recursive then, for k 

the # of states in the Turing machine that computes h 

h(n + 2k) > h(h(n)) 
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(cf. Boolos and Jeffrey [1974] p. 38). Now the property that h(n + 1) 

> h(n)  yields that h(j) > h(i)  if j > i  for all i,j < w.  Thus, 

j < i  if h(j) < h(i)  for all  i,j < w.  Now let  i = n + 2k and let 

j = h(n)  to obtain 

n + 2k > h(n)  for all n < w 

Positive translations do not affect this relation, and so, 

n + 11 + 2k > h(n + 11)  for all n < w 

follows if h  is recursive. 

From the lemma, part (3) h(n + 11) > 2n  (and this is true 

whether or not h is recursive). Combining inequalities, we obtain 

■':.. --.    . n + 11 + 2k > 2n       „r 

if h is recursive.  Therefore, 

* 11 + 2k > n 

for all n < w,  if h is recursive. In the particular case of n = 12 

+ 2k,  this relation gives the following piece of nonsense: 

11 + 2k > 12 + 2k 

Therefore the function h cannot be recursive 

It is not hard to construct other examples of non-computable 

choice functions for any recursively enumerable strictly monotone 
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increasing family of finite sets. We have chosen the above example for 

the sake of its clarity. 

The fact that no recursive h can exist such that 

h(n) - argmax f 
B(n) 

for all n, means that the demand correspondence induced by the choices 

made in accordance with f cannot be recursively realized in a uniform 

way on the family of finite sets  (B(n) : n < w)  The paper entitled 

"On Turing Degrees of Walrasian Models", Lewis [1987] gives a 

formalization of this example in terms of the partial ordering on the 

Turing degrees of unsolvability as an extension of our earlier work on 

recursively representable choice functions. The graph of any such 

function that uniformly computes 

argmax f 
B(n) 

for all choices of n < w cannot even be R.E. As we have argued 

elsewhere, this level of complexity is exceedingly high for the 

realization of recursively representable choice functions, as it places 

the matter of effectively realizing recursively representable choice 

functions in excess of Hilbert's Tenth Problem for the decision 

procedure of Diophantine predicates over the integers (c.f. Matiyasevic 

[1970]). What this means is that even if we had a machine or an 

algorithm that could provide solutions to Hilbert's Tenth Problem, said 
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machine or algorithm would not come close to the uniform realization of 

a recursively representable choice function in neoclassical 

mathematical economics. 

The above counterexample, and the resulting complexity of 

recursively representable choice functions, taking place in the domain 

of countable families of finite sets, leads us to ask the following 

questions:  Do non-trivial demand correspondences really exist in any 

meaningful (i.e effectively) constructive sense? Within the confines of 

Church's Thesis and its attending equivalences to the recursive 

functions, the answer seems to be, no. 

2.   Implications Of Non-Recursive Realizability For The Complexity Of 
Walrasian Models. •:     . 

In the paper, "On Turing Degrees of Walrasian Models", we 

represent a model of Walrasian general equilibrium as a two sorted 

structure: 

Z    is the dimension of the commodity space and the structure has two 

sorts of variables:  I  of cardinality m for consumer agents, and J 

of cardinality n for producing agents, along with sets of criterion 

functions for each type of agent, {(X^,A^(w.,p)}^^j  and 

{(Y, ,r?. (p)). gj  as defined in Debreu [1959]. 

Intuitively speaking, a choice function on a recursive domain is 

recursively realizable if and only if its graph is recursively 
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solvable, i.e. its graph is a recursive set in the appropriate product 

space of a choice of recursive metric space. Since the complexity of 

the realization of any recursively presented model of Walrasian general 

equilibrium in the sense of Turing equivalences can be no less than the 

complexity of the realization of the choice functions for each type of 

agent, the non-recursive realizability of recursively representable 

choice functions on finitely dimensioned Euclidean domains implies the 

non-recursive realization of models of Walrasian general equilibrium 

that are recursively presented, with trivial models being the only 

exception. 

These matters may be sunmiarized by the following results. 

Theorem 3:   Let  (R(X),FJJ)  be a recursive space of alternatives 

derived from the recursive metric space of R" , M(R.")  for R(X)  the 

recursive representation of a compact, convex subset of R".  Let 

C: Fj^ "* FR  be a non-trivial recursive rational choice on (R(X),FJJ) and 

select from the class of sequences (Fj^)'*' any non-null element 

{^R.}-^jj with infinitely many distinct terms for the domain of C. 

Then per fixed selection of  {^R}<t^,. ttie co-domain of graph  (C)  is 

non-recursive and therefore the choice function is not recursively 

solvable and thus cannot be recursively realized. 

Corollary:  No non-trivial recursively representable model of 

Walrasian general equilibrium or N-person non-cooperative game in the 

sense of Nash is recursively realizable. 
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3.   Are There Totally Effective Frameworks For Mathematical Economics? 

Recursion theory is not synonymous with the contemporary theory of 

computational complexity and so one may ask what the implications of a 

Turing degree classification result within the Kleene-Mostowski 

arithmetic hierarchy are for polynomially bounded computations. We 

briefly discuss these implications in this final section. 

First of all the Polynomial hierarchy in computer science is an 

adaptation of the Kleene-Mostowski hierarchy by restricting quantified 

formulae to be polynomially bounded statements. It is not known however 

if the Poly-hierarchy is distinct or whether it collapses at some level 

of complexity, as a consequence of P = NF or the fact that complete 

NP  sets are polynomially isomorphic. Still, one may inquire to what 

extent is it possible to "transfer" results in Kleene-Mostowski 

hierarchy "downwards" to the Poly-hierarchy. 

R. Jerislow [1985] has obtained results of complexity for very 

simple-minded equilibrium models that are based upon Stackleberg [1934] 

sequenced-move games placed in a setting of multi-level integer 

programmes. 

Theorem 4:   (Jerislow [1985] ) The class of multi-level finite 

Stackleberg models of equilibrium is PSPACE complete 

Thus, even in the case of simple-minded translations of models of 

economic equilibrium into the framework of the Poly-hierarchy the 

bounds of complexity seem in excess of any NP-complete problem, e.g. 

integer programming, the existence of Hamiltonian circuits in a finite 
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graph, the sub-graph isomorphism problem for finite graphs, finite 

graph k-colorability, existence of equilibrium points for finite N- 

person non-cooperative games with product-polynomial payoffs, and a 

host of other problems that can be found in Garey & Johnson [1979]. 

Problems in the theory of algorithms that are also PSPACE complete are 

(i) the proper representation of regular expressions over the binary 

alphabet (0,1); (ii) The Meyer-Stockmeyer [1973] problem of determining 

whether two person alternating games on quantified Boolean formulas are 

determined, (iii) the existence of winning strategies in E.H. Moore's 

game of k-Nim or (iv) the existence of winning strategies in the simple 

game of two-dimensional Hex: 

'  Player II 

Player I 

Figure 1 

On the other hand, if we try to translate the mathematical 

framework of the more complex Walrasian models into the Poly-hierarchy, 

then many difficulties that are conceptual in character arise. The 

first such difficulty is that the Poly-recursive reals do not form a 
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recursive field. This is a consequence of a result due to Jockusch of 

the University of Illinois ar Urbana to the effect that the primitive 

recursive reals do not form a recursive field, i.e. neither of the 

above sets of numbers with the appropriate operations and distinguished 

elements can be isomorphic to any recursively presented field. Another 

way of highlighting the defect of considering only Poly-recursive reals 

is that Moschovakis [1964] has shown that the recursive metric space we 

have employed to obtain recursive presentations of Walrasian models of 

general equilibrium are recursively categorical for the class of 

listably-ordered recursively presented fields, i.e. the recursive 

metric space M(R")  is recursively isomorphic to any other countable 

listably-ordered, recursively separable, recursive field. 

Other barriers to doing classical analysis on just the Poly- 

recursive reals are detailed in the recent work of Harvey Friedman 

[1985] where it is shown that simple closure properties of the Poly- 

recursive reals with respect to maximization entail the collapse of the 

Poly-hierarchy through the consequence that  P = NP.  Thus any downward 

transformation of the Kleene-Mostowski hierarchy to the polynomially- 

bounded predicates vanishes if we require algebraic closure for the 

Poly-recursive real numbers. 

As things stand, we do not know how to formulate the necessary 

analogues within the Poly-recursive real numbers to obtain Poly- 

recursive representations of Walrasian models of general equilibrium. 

And even if this were accomplished in some acceptable way, for the 
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purpose of ranking realizations of Poly-recursive representable 

structures, one needs some classification of the relevant sets of Poly- 

recursive reals in terms of the Poly-m degrees, i.e. those degrees 

generated by the reducibility:  <^,  where the  P and m represent 

Polynomially-many-one reducible. But these degrees are much more 

complex than the Turing degrees and one does not have simple 

relationships between orderings on the Poly-m degrees and levels of 

complexity within the Poly-hierarchy, and for the reducibility to make 

sense, not only do we have that a set of integers A in w is <^ - 

reducible to another set B c w if for some polynomially bounded 

recursive function f, xeA iff f(x)eB  but we must require that  f 

have a polynomial inverse as well. These special features of the Poly- 

degrees lead to the fact that the theories of the R.E. sets and the NP 

sets are not elementary equivalent from differences in the resulting 

structures induced by the special features of the Poly-degrees. A full 

discussion of this can be found in the paper by P. Odifreddi, 

"Recursion-Theoretical Aspects of Complexity Theory", Department of 

Mathematics, Cornell University, 1985.   '' 

Our results within the Turing degree framework of the Kleene- 

Mostowski hierarchy and the above mentioned difficulties in finding 

suitable translations of recursive representability within the Poly- 

hierarchy leads to another issue. 

One way to interpret our results is to say that the notion of a 

recursively presented field is too complex an algebraic object to serve 
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as a framework for an effective theory of games. On one hand if one 

gets recursive presentations of fields, the relevant task- 

correspondences cannot be recursively realized, and If one tries to put 

things within realm of feasible computations by restricting the 

alternatives and outcome spaces to just sets of Poly-recursive reals, 

we do not get enough algebraic closure to carry out the theory. 

Faced with this situation, it seems reasonable to search for 

algebraic objects that are less complex than recursively presented 

fields. For example, if we restrict games to be played on 

arithmetically definable sets of integers, life is more pleasant from 

the standpoint of computational complexity. These models translate 

easily into subrecursive fragments of arithmetic, and reasonable bounds 

for the Poly-recursive games that are played take place in PSPACE. The 

relevant algebraic structure here is a discretely ordered ring. 

Actually, in most game-theoretic models, the full-force of the field of 

real numbers is not required, and the choice of the real numbers for 

Walraslan models of general equilibrium comes from the desirable 

topologlcal properties R enjoys as an ordered structure. 

Of course, if one simplifies the admissible algebraic structures 

that games are to be played upon, it becomes more difficult to obtain 

what we like to call "good" results. Typically, the simpler a structure 

one deals with mathematically, the more complex the techniques employed 

to obtain deep results. The paradigm of this is of course number 

theory, or the theory of finite groups vs. the theory of functions of a 
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real variable, or functional analysis. Evidence to support this view of 

ours is the fact discussed above that one cannot "transfer" downwards 

to the Poly-hierarchy, in a uniform way, the power of the topological 

techniques of analysis. Of course, finite fields do exist e.g. the 

Galois fields, but here a rather careful understanding of algebraic 

curves, transformation groups and collineations is required to look 

into the possible use of such fields within the projective geometries 

that are defined over them. I have not assessed the sophistication of 

the typical graduate course in mathematical economics lately, but I 

suspect this programme, and any such like it, would have to extend well 

into the next decade for any widely based acceptance by the profession. 

If, for the sake of computational viability, the approach of 

simplifying algebraic structures is taken as a methodology for 

modelling economic theory, one need not go all the way to the extreme 

case of considering totally finite models, with no infinity present in 

the alternative space or outcome space, as Campbell [1976] has done, to 

obtain recursively realizable choice functions or Walarsian models. For 

example, suppose it were possible to predicate a theory of games (and 

Walrasian models of equilibrium) on the consequences of a positive 

solution to Hilbert's 10th problem. A very important mathematical 

result of last year by Robert Rumely of the University of Georgia tells 

us that such a theory could be effectively carried out over the ring of 

all algebraic integers of a finite extension field of the rationals. If 

one took the ring of all algebraic integers as a basis for game- 
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theoretic structures and allows the space of alternatives and the space 

of outcomes to be recursive sequences of codes into the ring of 

algebraic integers, and further allows only operations that are 

definably equivalent to the solutions of Diophantine equations in the 

task correspondences of the structures, then Rumely has shown that 

based on an earlier work of Cantor & Roquette [1984], fully effective 

procedures exist to realize such correspondences. What Riamely has shown 

is that there is a primitive recursive decision procedure to realize 

Diophantine predicates over recursive subsets of the ring of all 

algebraic integers. In addition to this tremendously important result, 

recent work by Manders & Adelman [1980] and [1981] have shown that 

polynomially recursive decision procedures are available for restricted 

forms of Diophatine predicates over w. 

So, our personal preference to obtain a fully effective theory of 

games is the approach of restricting effective constructions in the 

theory of games over decidable predicates of simpler algebraic 

structures than the recursively presented fields. The way in which one 

would carry out the development of a theory in such a setting would be 

simply to try and prove as many theorems as possible about the 

structures that are combinatorial in nature and that follow from the 

realizations of the task-correspondences that are definable in terms of 

the decidable predicates of the structure. A very good beginning can be 

had with the study of Diophantine predicates over the ring of algebraic 

integers. We have recently shown that Arrow's impossibility Theorem can 
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be extended to the infinitary setting in an effective way by using the 

recursive complexity of Diophantine predicates over the ring of 

algebraic integers within the lattice of its R.E. sets. Using von 

Neumann simple games (cf. Shapley [1962]) without the use of the 

algebraic integers as a coding device, we have shown that Arrow's 

Impossibility Theorem (cf. K.J. Arrow [1951]) can be extended to the 

infinitary setting using the R.E. complexity of Diophantine predicates 

over the positive integers only (i.e. the natural numbers). For details 

see the forthcoming research announcement: "An Infinite Version of 

Arrow's Theorem In The Effective Setting", Lewis [1986], to appear in 

Mathematical Social Sciences.  More recently, using similar techniques, 

we have obtained a very interesting positive recursion-theoretic result 

for the abstract allocative mechanisms initiated by Leonid Hurwicz 

[1960]: among the class of recursively presentable Hurwiczian discrete 

allocative mechanisms, a  = [o.].^^,   there is an R.E. class, 

a =  {^i'i<w' w^°se performance correspondences are uniformly A°2 - 

decidable; and within a,     there is an R.E. subclass !£.  = (i?).^,, 

whose performance functions are uniformly recursively realizable. 

Actually, the theorem we prove is actually stronger. In effect, we 

show that there exists an R.E. class of resource allocation mechanisms 

which is uniformly realizable in NP-complete complexity. The reader is 

asked to note that the class constructed is a class of resource 

allocation mechanisms whose realizations use uniformly sub-recursive! 

Of course by our previous results, these mechanisms cannot be 
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Walrasian, but we have made the observation that the following type of 

Hurwiczian mechanism does in fact satisfy the description provided in 

our theorem. ' 

Let TT be a Hurwiczian mechanism of the form: 

TT = <E,M,A,(h,g)> 

where  E  is an environment,  M a message space h: ExM -►A is an 

outcome function for A a space of actions and g: ExM -+ Z  is a 

performance criterion. We require in this setting that E,M and A are 

discrete, i.e. we allow E = M = A = Z where  Z={...-n, - (n- 

1)..., - 2, - 1, 0, 1, 2 n, n+1,...} Obviously the complexity of 

a mechanism such as ir    resides in the choice of h and g. Of course 

E = ^igiEi  and M = "'igiM^  for I = {l,...,n}  a set of agents and g = 

(Si . ■ • ■ .Sn)  while h = (hj^ , . . . ,h^) . 

Now suppose equilibrium outcomes for the mechanism n    are given 

by a set of equations 

{giCe^.m,) = 0),,i 

where by obvious convention g^^ : E^xM^ -♦ Z. Hurwicz construes the 

performance of a structure such as n    by means of a performance 

correspondence  F: E -»■ A given by the rule: 

F(e) == {a: 3 <e,m)eExM [Viel[g^(e^ ,m^) - 0 & h^ (e^ ,m^) = aJ ] ) 
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It simplifies matters greatly if we allow  |A| = |Aj^ |x. . .x|A^ | = K < w, 

but the following result is true if A^ = Z  for all  lei. This 

Theorem, we believe, is the first result of its kind that establishes a 

clear and solid concrete link between the sub-recursive complexities of 

contemporary computer science, and an entire class of resource 

allocation mechanisms that are comparable in task to Walrasian models. 

Theorem 5:   For the class of discrete Hurwiczian allocation 

mechanisms Q = ii^a'^a'^a' ^^•S>^a^aeA^     ^°^    ^    some infinite index 

set, there exists an R.E. subclass of recursively presented mechanisms 

a = {{E.,M.,A.(h,g),) = n.). such that the associated performance 

criteria for the class a,{F.(e)) ^^,  is a uniform recursive class of 

functions, which is uniformly realizable in NP-complete complexity. 

For the associated performance criteria class {F.(e)).^^ of the 

structures a,   the task of finding actions aeA for a given eeE  is an 

NP-complete problem; in other words, if we know the computation of any 

NP-complete problem in computer science, then this computation is 

sufficient to obtain F,(e) = a by a computation for all j < w!  We 

feel that the discovery of the class a will allow a general theory of 

resource allocation that is realistically computational in character 

over a very rich class of Hurwiczian mechanisms 

a = {(E.,M ,A.,(h,g).) = T.},<t. that have recursive presentations. 

What this means in turn is that properties of the models  a.ea     that 

are predicated on whether  F. (e) = a or F. (e) 9^ a    can be checked by 

the solutions to an NP-complete problem. 
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Here are three concrete examples of NP-complete problems that will 

each provide enough mathematical information to realize the class of 

performance correspondences  {^j(^))j<w ^°^ structures ^j«" in an 

effectively computable way. 

Problem 1:  Let  {G :1 < j < n) be a set of product poljmomials 

over Z[x^ x^^ ]  such that Rng(G. ) c M, c Z and M.  is a finite 

set for all  1 < j < n.  Does there exist a sequence  (y. jy,,•••.y ) 

of integers with y eM.  for all  1 < j < n such that for all 

1 < j < n and yeM, 

Gj(Yi yj-1.yj-yj+i y„) ^ G.(y,,....yj.^.y-y^+i....,y„)? 

Solutions  {y^^ y^^) can be found in NP-complete complexity. 

Problem 2:  Let (a^^ , . . . .a^^) be an arbitrary sequence of 

integers. Is  (a^ 5 .a^^ , . . . .a^^S ) a solution to 

'27r n 
(TT cos(aj^))d^ = 0 ? 

0 j-1 

Problem 3:  Define an integer expression class over the structure 

t  = <Z'^,U,+>  inductively as follows:  (i)  If neZ"*" ,  then the binary 

expression for n =  Xj<w '^'^   ^j '  ^°^ Xje{0,l}  is an integer 

expression representing n.  (ii)  If f and g are integer 

expressions that represent sets F and G in Z*,  then fug 

represents  F U G and f + g represents  F + G = (m + n: mcF and 
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neG). Let KeZ"*"  and let e be an integer expression for an arbitrary 

set E c Z"^ .  Is KeE? Whether or not KeE or K€E  is answerable 

with an oracle for an NP-complete problem. ■ 

The solutions to any one of the above problems in the form of 

algorithms will provide enough information (mathematically) to 

uniformly realize the task of the family of performance correspondences 

{F.(e)),^^ asserted to exist by Theorem 1. 

To construct the class a    we allow the functions  {(h.g),}.^^^ 

for a mechanism , ' 

TT. = <Ej,M.,A,,(h.g).> 

to be of a specific binary quadratic form, i.e., every g^  in g = 

(Si . • • • .gn^  °^ '^i  ^" h = (h^ hjj)  has the form ay}   + ^y = c 

for choice of parameters {a.,^,c}  c Z where  c = 0 uniformly if we 

are in the subclass  {gi^igi  ^i^^ c = a^  uniformly if we are in the 

subclass  (^i'iei-  The definition of 

F(e) = {a:3 <e,m> eExM[VieI[g. (e. ,mj = 0 & h^ (e^ ,m, ) = a. ] ] ) 

Now reduces to a convenient algebraic expression; it suffices to find 

the points of the algebraic variety in 7?     defined by the expression 

AViel [(g,(e. ,m.)) (h,(e. ,m,)) =0] = <p(7r. ) 

Here we obtain integral points  (e,m)e!p(7r. )  from a product of zeros 

from binary quadratic forms ox^ + )3y = c over l} .   Finding zeros of 
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the binary forms QX^ + ^y - C is an NP-complete problem In each 

instance (the proof of this is rather deep and requires a clever 

number-theoretic reduction) and so the question of (e,m)c(p(7r, )? is NP- 

complete for each mechanism "■jCQ!- Just code the programmes for each 

equation into a "system programme"  <p(w,)  by dovetailing. It is worth 

mentioning that the binary quadratics above are not the only classes of 

number-theoretic functions that will give similar results in 

complexity. The result is still valid if the functions  (g,,h.) have 

polynomial form in Z[x^ x^^ ]  for arbitrary n < w if only one 

dimension is coded in a non-linear way. 

The importance of Theorem 5 is that it enables comparisons of 

complexity with other models of games in the sub-recursive 

hierarchy,i.e. the polynomial-hierarchy. For example, the above R.E. 

class a of Hurwiczian mechanisms is uniformly less complex than the 

following class of game-theoretic models. 

Here the  {A-Migj  are mxn^  matrices over Q and Xj  is an n^^xl 

matrix over Q and each c^ eQ is such that c^x =  J^^^^Cj'^Xj  for 

I - {l,2,...,p), p a positive integer. The game is played by allowing 

the set of players to each choose a variable Xj  for a given structure 

<{AMiei  . ^^'hei      '     K     '     l^'5i6i> 
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with player p  choosing x^, p-1  choosing x^"^,...player  1 

choosing x-^ . 

Given constraints of the form: 

i-1 

the game is played in order to maximize c^x over values xeS  where 

S., 1 < i < p  is defined inductively as the set x which maximizes 

c^x over S^_j^.  The set which satisfies the constraints 

y? , A^x^ < \>„     is denoted as  S . Obviously, we assume  S  T^ 0.  If p 

is an arbitrary positive integer, the problem of determining the value 

for these games is PSPACE-complete! (cf. Jerislow [1984]). This 

complexity is as high as one can possibly go within the polynomial- 

hierarchy. And this discussion leads to the next result. 

It is known that P ?* NP implies that PSPACE complexity lies 

properly above every fixed complexity category of the polynomial-time 

hierarchy, i.e.   ^^'PUTT^-PC PSPACE. If a  is a class of structures 

with recursive presentations, we let maxdeg(a)  and mindeg(a) 

(deg(Q)  and deg (a))  stand for the maximal and minimal degrees of 

structures aea with respect to the Turing degree of complexity of the 

realization of the task associated with <^,^(j-     For a more detailed 

view of this kind of model-theoretic analysis, the reader should 

consult the paper by the author: "On Degrees of Game-Theoretic 

Structures", Cornell Department of Mathematics, [1986], to appear in 
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Mathematical Social Sciences [1988] or the monograph, Structure and 

Complexity. [1986] also by the author. 

Theorem 6:   Assume  P s-^ NP.  Then for the class i? = {({Aj'iei 

{x! }j^ gj ,b. , {c^ )^ ^j ) ) . ^j^ of p-stage multilinear programmes and the R.E. 

class a = {TT. = (E. ,M ,A. , (h, g). ) ) .    of Hurwiczian recursively 

presented allocation mechanisms constructed in Theorem 5, 

dig (a) <p deg W 

for <  a polynomial Turing reducibility. 

In terms of algorithms that attain PSPACE-complete complexity or 

NP-complete complexity results like Theorem 6 allow concrete trade-offs 

between the performance characteristics of mechanisms and game that use 

structures in the classes a  and £.    and the degree of computational 

complexity associated with the realization of those performances. Since 

most of the problems of PSPACE or NP complexity have very interesting 

mathematical formulation that are concrete in character, this kind of 

analysis places the assessment of the complexity of resource allocation 

mechanisms within very interesting areas of ordinary mathematics. i.e. 

algebra and combinatorial graph theory. In the case of the recursive 

structures in a or !£.,     the comparison is quite strong, since the 

difference in the complexity bound of structures in 2    above those in 

a    is uniform. 

Obviously, similar results should be obtainable for other games 

specific to mathematical economics, but at a cost of the desirable 
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consequences of properties inherent in finitely dimensional Euclidean 

domains, such as convexity and other topological features, which seem 

to us to be the source of noneffectiveness in the models from the 

recursion-theoretic point of view. To assess the feasibility of such a 

programme for mathematical economics, one would have to establish just 

how much of the "economic" theory can be carried out in totally 

discrete mathematical setting, as Hurwicz and Marshak [1985] have 

assayed. Ostensively, it seems to us that any portion of the theory 

that is essentially dependent upon topological features of finite 

dimensional Euclidean spaces, or convexity, may be the price of 

admission to the totally effective setting. For example, in Garey and 

Johnson [1979] it can be found that the complexity of the existence of 

equilibriiam strategies for Nash N-person noncooperative games played on 

finite sets of pure strategies and with polynomial payoff functions is 

PSPACE - complete. This complexity, while in excess of P or NP 

complexity is well within acceptable bounds for recursive 

realizability, however. 
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